import pandas as pdimport numpy as npimport argparseimport randomfrom model import KGCNfrom data_loader import DataLoaderimport torchimport torch.optim as optimfrom sklearn.model_selection import train_test_splitimport matplotlib.pyplot as pltfrom sklearn.metrics import roc_auc_score
---------------------------------------------------------------------------ModuleNotFoundError Traceback (most recent call last)
Cell In[1], line 5 3importargparse 4importrandom----> 5frommodelimport KGCN
6fromdata_loaderimport DataLoader
7importtorchModuleNotFoundError: No module named 'model'
Arguments
# prepare arguments (hyperparameters)parser = argparse.ArgumentParser()parser.add_argument('--dataset', type=str, default='music', help='which dataset to use')parser.add_argument('--aggregator', type=str, default='sum', help='which aggregator to use')parser.add_argument('--n_epochs', type=int, default=20, help='the number of epochs')parser.add_argument('--neighbor_sample_size', type=int, default=8, help='the number of neighbors to be sampled')parser.add_argument('--dim', type=int, default=16, help='dimension of user and entity embeddings')parser.add_argument('--n_iter', type=int, default=1, help='number of iterations when computing entity representation')parser.add_argument('--batch_size', type=int, default=32, help='batch size')parser.add_argument('--l2_weight', type=float, default=1e-4, help='weight of l2 regularization')parser.add_argument('--lr', type=float, default=5e-4, help='learning rate')parser.add_argument('--ratio', type=float, default=0.8, help='size of training dataset')args = parser.parse_args(['--l2_weight', '1e-4'])